
LINQ - Language Integrated Query 
Introduction

• Similar to SQL - works on Collections

• Three basic operations:

• Get the source

• Create the Query

• Execute the Query

All right we're going to start linq.
LinQ means Language Integrated Query.
It's very similar to SQL with the difference that 
LinQ works in collections and SQL works in 
databases.
They both perform the same thing.
Both are designed to extract some information 
from a collection or database based on some 
conditions.
All LinQ operations can be expressed in three 
steps.
First we get the source then we create the 
query and then we execute the query.



LINQ - Language Integrated Query 
Structure of a Query

• Structure of a Query:

• Define the source - from ... in ...

• Define some conditions - where

• Take the filtered output - select
Let's start analyzing the structure of LinQ queries.
The first thing that we have to do is that we have to define our 
source.
We start with the keyword FROM.
Here we define the variable that is going to iterate over the 
source.
FROM - iterating variable - IN - source.
After that we define some conditions by using the WHERE 
keyword
and we SELECT all of the new items that match our condition.



So let's see this in action in a simple example.
So we're going to create a simplest example of about LinQ.
There are two collections in the example – first is collection of 
strings and second of numbers.
Also you need to have a System.
And LinQ namespace added to your project.



We're going to use var data type because we're always going to use different type of collection.
Our final type may be different from that of the collection.
So you would always need to know what is a type that you need to have for your query.
So it's just easier to use var.
Get theuumbers is what I'm going to call my query.
We start with the keyword from.
So after keyword from the first thing that you're going to do is use the iterating variable. So the name of our iterating variable will be "num".
It can be anything you want you can just simply use the letter.
And then we choose what is our collection.



And then we're going to select number. Currently we don't have any 
conditions.
We're simply selecting all of the numbers in the numbers array.
We're going to print all of these new numbers on the console just to 
see our output.
There is a quick and easy way to print arrays on one line of code.
We can use string method - Join to print collection as one string



We get the exact same numbers that we have here in the numbers 
array.
Now let's say that we want all of the numbers that are less than 5.



We are going to use the where keyword and we are going to give it 
the condition.
The condition is "where number is less than 5".



If You run that project now, we should be able to 
get all of the numbers less than five.
There are 3, 2, 1, 4, 3 and 4 and no other numbers 
that are less than 5.
And at the bottom of the example, we're going to 
perform the same operation, but we're going to 
use a simple loop.
First, we're going to create the integer list because 
we don't know how many numbers we are going 
to have.
That's why we can't use an array. An array needs 
to keep its size predefined.
And then we're going to create a For Each loop so 
for a number in numbers.
If the number is less than 5, we are going to add it 
to the new numbers list.



execution

execution

Now there are two ways to do the same 
thing, and we should have the same result.
We can compare the two methods.
Query operates just in three lines of code 
and
in the second method, we had to create a 
new list we had to use a for loop, and we had 
to use an IF condition and lot of brackets.
A second difference is that in the first 
method, the query is not executed until use 
this new collection somewhere.
That is why executing the query is the third 
step.
First, we simply create the query, and it is 
being executed down here when we try to 
access it.
The for loop is going to be executed 
immediately where it is implemented, and 
we already have all of the new numbers 
when we access them.



And there is a more complex example.
We can do the same example where a 
number is more than 5, and the number is 

less than 10.
And what we get now?



So we have 6 7 8 6 7—the same 
result using query and by applying 
for-loop construction.

OK.
Let's see a couple of other 
examples.
You can use the where clause with 
any condition that would give you 
a boolean value. True or false.
So you can do much more than just 
checking for numbers.
Let's create a new query.



So let's create a new query that is going 
to work on the correct names string 
array.

So we want to extract all of the cats. All 
the names that have the character „a” in 
their names.
To do it, we use the String method 
„contains”.
Second-line checks every string in a string 
array and every string which contains „a” 
is going to be selected in the third line.
Here are the names: Bella, Luna, Simba 
and Oscar.



You can also have multiple expressions -
multiple conditions in the WHERE clause.
So we can also select strings where they 

contain a letter „a”.
And it's also less than five characters 
long.
Luna is the only name that contains the 
letter „a” and has a length less than five.



You can also split your conditions into 
multiple expressions on multiple lines.
So instead of saying length is less than 5 

and string contains „a” we can do it in 
two lines.
And so we don't need the brackets 
anymore.
It's going to work the same way.
If we have long and complicated 
conditions, this is how we can split them 
into different conditionals to make them 
more readable.
They're going to work in the exact same 
way.



One last thing that I want to show. You 
can see the numbers between 5 and 10 
but they are not ordered.

We can order them using keyword 
orderby.
You can also order them in descending 
order. Descending by simply using the 
keyword descending.
We don’t need to use ascending because 
ascending is the default way in which the 
numbers are going to be ordered.



LINQ Queries
on Objects

Basically what you do with LinQ things 
will be more interesting in the next 
lecture. LinQ Queries on Objects



All right let's practice.
But now with objects. We created a 
simple internal class called person with a 

couple of fields a couple of properties.
And a constructor, and internal 
enumeration type gender.
We have prepared the list of people a list 
of objects that we're going to use for our 
examples.



Now we want all people whose name is 
exactly four characters long and we want 
them in a new collection.
From p in the people.
So we want to select all people that have 
names that are 4 characters long.
So we tape WHERE the name dot length 
so the length of the name is equal to 4.
And then we select these people.
Now we can't use the string and JOIN 
trick that we had in the previous 
examples because here we have a 
collection of people - not an array of 
strings.
We should do it by the foreach loop.
So we have John Anna Kyle Anna John 
and we are missing Maria and Tod.



Let's see another example.
Now we want all of these people, but 
we want them all as ordered by their 
Weights.
We can order by numbers since we're 
dealing with something more complex 
like an object. We can use their 
properties.
It can have many properties. In our 
case, we have two numeric properties 
Height and Weight.
We can order it by some of these 
properties. You can see the ordering by 
Weight of the person.
And printing.
This is string interpolation ($”…”). We 
use curly brackets to allow put 
variables exactly inside our string.
Now we can see all the people sorted 
by their weight.



Of course, you can have multiple 
orders just like we can have
multiple where clauses.
And here we're ordering them by 
weight.
Let's order them by their Name and 
their Height.
So we ordered first by name and then 
by Height.
And you see for the same names; 
persons are sorted by their Height (but 
descending).
Of course, we can make ascending or 
descending order on both properties 
by adding or removing keyword 
descending.



Now we want to extract the names of these people 
into a new collection - the names themselves. No 
people.
We have collection of people. Now we will have a 
collection of strings.
We want only names from the collection of people.
All we have to do is modify our select role and instead 
of select p we write select p.Name (p dot Name).
And there it is. Anna John Kyle Anna John - and we no 
longer have any properties here. Because it is not our 
object Person but string with the string methods and 
properties.



The End

Now it is end of the presentation but not end of LinQ.
We will continue with LinQ but in a different way –
using the Lambda expression.


