
Lambda expressions

• Denoted by the lambda operator =>

• Input => (work on the input);

• N => ((N%2) == 1);
The lambda operator which is an equal sign and bigger than arrow.
It's used to separate the input values on the left side of the arrow, and the body of the code on the right side.
So basically we have an input on the left side and some code that is going to work on this input.
It’s simply a method without a decoration.
It lets you create your method in the same place where you're going to use if that needs to be used only once.
It saves you the effort of writing a separate method.
And there is the simple example to do with lambda expression.
We have one input which is just N variable. Let's say that this is a number an instance for number.
We're checking if N divided by two has remainder of 1 and then we're going to return some value to the variable that lambda expression.
When we check if a given number divides by two with a remainder or without remainder.
If we get a 0 it's an even number.
If we get a 1 it's an odd number.
So basically we're checking if it is an odd number.

Now we have a template to do some
examples. We have a list of integers and we
want to choose only odd numbers from the
list.
We can do it using LinQ query.

If we use the LinQ we could do
it the following way.
Var oddNumbers equals to
from N in numbers where N
divided by two is equal to one.
Select N. If we print this on the
console we get all of the odd
numbers. We don't have any
even number.

How are we going to do the same thing with
lambda. We are going to write "numbers" and
press dot and look at how many methods we
have here. Some of these methods are
available only because we are using the LinQ
namespace. So we're going to use the where
method. It's also an extension method. And
we're going to talk about extension methods
very soon.

We're simply going to create a new lambda expression.
We're going to say: WHERE N the lambda operator, N
divided by two has a remainder of 1. All right. What is the
result of our work? It is working. So, how does it work? The
N is the iterating variable; just like with the LinQ query; just
like with the ForEach loop. And it is going to iterate on the

numbers array. So whatever we have as a collection – a

lambda expression will work on it. On the left side of the
lambda operator, we have iterator for that collection. It
works exactly the same way as in LinQ query in the example.
It takes each of the numbers using the variable and it checks
if it matches our conditions. And if it's true it's adding it to
our new collection. So we reduce the code even more. With
the ForEach loop, we do it in seven-eight rows. With LINQ
we do it in three rows. And with lambda, we do it in a single
line of code.

Next problem is that the result of the
expression is a collection but not a list. We can
convert it to a list by writing the type of
collection and converting the result of the
expression. All we have to do is simply write
ToList. And if you do this it's still going to work
and you're going to have the numbers in the
list.

The next tricks with lambdas that can be shown is for example
that we have our cat names. And we want to check what is the
average length of a cat name - how many characters is the
average length of a cat name. We created a new variables. So it
is equal to catNames dot average. And then we need to specify
exactly what we want to take. The average of what value we
want to take. We want the average of the length of the names.
So, variable cat, a lambda operator and we want to iterate over
the lengths of the names so get that length. And we're going to
print it on the console. So the average length of a cat name from
our array of cat names is four point five. The same way we can
find out what is the minimum length of cat names, maximum
length and a sum of all characters in known cat names.

So minCatLength equals catNames dot min
open bracket and lambda expression: cat
lambda operator and lambda dot length –
because we still working with the lengths of
names.
And so maxCatLength and sum of the cat
names.
And we are writing it on the Console, and it is
the result: min is 4 letters, max is 5 letters and
sum of every cat names is 36 characters.
Of course here you can use some more complex
formulas if you need too.

So let's move on to something more
interesting. Here we have an array of objects.
As you can see this array is a very strange array
and it has integers, strings, characters and lists
of integers. So let's say that we want to extract
all integers from this array. We can do it very
quickly. We write variable allIntegers equal to
mix dot ofType. We only need to use this
ofType method and set the type we are
looking for by using angle brackets. We're
looking for integers in brackets and that's
everything. We don't have any expressions yet.
And here we have one, one, two, three, four.
All right so we have all integers.

Now let's say that we want to extract all
integers from this object array that are less
than 3, for example.
So to do this we have to use the where
method again .
So WHERE the lambda expression.
So i which is iterating variable for integers; the
lambda operator and the condition: i is less
than three.
Now we see only numbers 1, 1 and 2.
Perfect.

And the last example that we can do is extracting the lists of integers. So we are going to do this
the following way. Var containsIntLists equal to mix of type. So here we are looking for types
that are lists of type integers so we write in angle brackets: list of type integers. So now we have
a bit more angle brackets. Then we're going to write toList because you want to be able to use
these lists. Now we are going to output the contents of containsIntLists variable. We write: for
loop and iterate from 0 to count of our list variable. For each list we write number of the list and
its content using Join of class string. So the result are two lists: List zero with elements: 1, 2, 3, 4
and list one with elements 5, 2, 3, 4.

Select method

Difference between where and select methods

Now we're going to talk about the difference
between select and where methods.
So lets show the difference with a simple
example.

Ok. We have an internal class warrior of one
property Height.
And in Main method we created a list that
contains some warrior objects.
Now let select from this list warriors whoos Height
is equal to one houndred.

We know how to do this.

Insteed of keyword var we can explicitly write

the type of list we have in result.

We select bigWarriors from warriors where

height of warrior is equal one houndred. An

then we convert in into List.

Then we write on the Console count of the

selected warriors.

Simply enough. In result we can see two
warriors.

If you want to get a collection which contains
only the heights and the Heights are of 100
we have to write: After collection name we
type WHERE method – in which we select all
items where the property Height is equal
one houndred. Then we write a method
SELECT – as parameter we type lambda
expression, which chooses only property
Name. And now by converting to List we
have List of all numbers of value one
houndred. Now, we can use a Join method
to write elements. There are two. Of coures
of value 100.

ForEach method

Now it will be shown how we
can use ForEach method inside
collections instead of
traditional foreach loop.

Ok. We have a list of our warriors. We want to
select only shortWarriors – shorter then one
houndred.
We can choose them by the method WHERE
and convert it to List by method ToList.
Now we can print all Height values using
foreach Loop. We write foreach keyword then
in brackets use item of type Warrior in
previously selected collection shortWarrior.
In the loop we print it by Console.Writeln.
As You can see the result is 80 and 70
Ok. Now we will make the loop using only one
line of code and lambda expression.

In this example we see the method of making
ForEach loop using ForEach list method. Ok.
Using the list with selected items we can write
ForEach method where a parameter is a
lambda expression. First we write item as an
iterating variable, then lambda operator and
code to execute for each item in the list. The
result is the same as using foreach loop.

We can do of course all the operations in one
line of code.
We can use method WHERE and inside
parameters choose interested elements, than
convert it to a List, and now use ForEach
method to show property Height of choosen
elements of the collection.

