
Generic methods

So we are finally in the generics.
At first they look complicated.
But in reality they really are not. 
Generics of course meaning that they can apply to more than one type.
So a method or a class which is generic - can work both for integer type and for string type 
and for any other type.



So let's start with something simple a method that checks that two numbers are equal.
This should be relatively simple and you should be able to do it.
As you can see – we have method AreEqual.
We're going to return a boolean value.
True or false whether the numbers are equal or not.
And arguments int num1 and int num2
We are simply going to return num1 equal to num2.
Very simple.
As we see in first example we have false and in second we have true.
It works good because in first example numbers are not equal and in second they are.
But now what if you want to make it work with any type.



What should we do.
Well one solution is to change the integer type 
to object.
That way we will be able to give with any type 
as an argument that we want.
Let's try do it.
We try it for three types. As we can see it 
returns wrong answers for integer type and for 
character type.
For string type it works good.
So it doesn’t work for any types.
We can not use the object type.



And as we see. When we try compare two 
different types. 
For example number and string – method tries 
solve it. 
Compiler can not recognize that there are two 
different types – not compatible and not 
comparable.
It's not possible to compare them because 
numbers are numbers and strings or strings.
There is no way to compare them.
So we need to make a few modifications to our 
method to make it work with any type and 
make it work as
it should be working.



First we need to give it the generic type we do this by using angle brackets 
right here after the name of the method and we use the letter T.
We tell by this that we will use type T in our method.
We also need to change the type of our arguments to T meaning that our 
method should be able to take any type as an argument.
Why we use T. We could use any letter or Name but we are using T by 
convention but that doesn't mean that we can't use something else.
You can pretty much use anything else you want.
You can write any type instead of T.
This is simply a name that you're going to use for the generic type and type 
T is just shorter and accepted as a standard generic type name.
As you can see we also have a problem with a comparing these two 
arguments.
And it says that operator equals cannot be applied to operands of type T or
T.
That's because currently our code has no way of comparing the two types 
that can be anything.
How are we going to make this method work.
We can't use the equals operator to solve this.



We can use the CompareTo method that's built 
into the Dot Net framework.
So let's try and do this.
But we now have not access to the method 
CompareTo from argument of generic type.
The reasoning is the same. 
It's not clear what types exactly are we going 
to take in, and C-Sharp can't compare them by 
default.
So we need to make some constraints on our 
generic type.
So we are using the where keyword.
So we're going to write where T is Comparable.
So what we are saying here: this is a generic 
method that takes any type of T and this type 
of T must implement the IComparable
interface.
This is a constraint that we are going to use.
Now we should have access to the 
ComparedTo method and there it is.
We have it because it's coming from the 
IComparable interface.
So any type that implements this interface is going 
to be able to used in this method.



Num one compared to num two.
We also need to check if it's equal to zero 
because the ComparedTo method returns an 
integer.
It returns less than zero if num1 is less than 
num2.
It returns 1 if first is higher than second and it 
returns 0 if they're equal.
And now we can see in results that it works 
well for numbers, for characters and for 
strings.
We can compare them all by one method using 
generic types.



And now we can try comparing two different 
types.
For example bool and string. As we can see 
compiler doesn’t allow them work.
This is because we are using different types 
we're using a boolean and string.
Here we are saying that we want any type but 
this type must be the same for both 
arguments.
So if we change them to both bool type, the 
method will be working.
Using generic methods is useful because we 
don’t need to write redundant code for 20 
different types and we can generalize them 
and use for them all.



Generic methods
for sorting collections

All right let's try another example here.



We have an implementation of the selection 
sort algorithm.
It's simply sorting an array. 



To confirm that it's working, we're going to 
print the results of our array after it was sorted 
and we show it by using string.Join method.
As we can see method works good and all 
numbers in array are sorted.
So our algorithm is working. Let's extract this 
algorithm into a method.



So, public, static and it returns array of integers 
and as argument it has also array of ints.
All right – as we can see it’s working.
So int sortedArray equals sort our array.



All right. Now let's try and make this sorting 
method as a generic sorting method so that 
will be able to sort anything in the array.
Now let's say that we want to make this 
algorithm work for strings.
All we have to do is change the return type to 
string array, input type to string array and temp 
variable to the string type.
And as we see on the console it is working for 
string type.
All right. So we confirm that the algorithm is 
working for both integers and strings.
Let's make it work for both of them and for any 
other type.



First we must start with the angle brackets.
So we're going to make it generic - T means any type 
that we're going to take.
So we are taking array of any type and we are going to 
return the array of that same type.
So we are working with only one specific type which 
can be any type.
All right.
And of course we have to implement the IComparable
interface because we should compare arguments of 
this type.
And now we tested it for numeric, string, character and 
bool arrays and it still works.
So we just created the generic sorting method.
It's going to work on any type as long as this type 
implements the IComparable interface.



Implementing the IComparable
interface in a class

All right we have created two generic 
methods: AreEqual and Sort that work on any 
type.
But so far we have tried it with integers and 
with strings and some simple types.
How about if we have our own custom type or 
a class.



Let's use a generic method AreEqual. As you 
can see it works for numbers, strings, bools 
and characters.
And now let’s create a new class - class person.



This class is going to have only one 
property that is Age. 
Of course in reality it can have many other 
properties but it has only one at the 
moment.
So right now we try to create two people.
Person one and person two.
And if I try to compare them it's not going 
to work.
It's not going to work because there is no 
implicit method to compare them.
Basically you can say that the person type 
is currently not implementing the 
IComparable interface.
Hence why it's not working.
So to fix it we have to implement the 
IComparable method to our class.



We do this by using a IComparable interface at the name of our class.
The only thing that it requires from us is to implement how two 
people are going to be compared.
So how are we going to compare two different people.
Well the only property is Age.
So this is what we're going to do to compare two people.
We're going to compare them by age.
If first Age is less then second then first person is less then second 
person. When ages are equal – persons are equall.
And as you can see we no longer have the error because we 
implemented the requirement of the generic method.
In first example persons are equall because their ages are equall. 
Result is true.
In second example ages are not equall and then persons are not 
equall. So the result is false.



Generic classes

So we not only have generic methods but we 

also have generic classes and there is one 

particular generic class that we use over and 

over again.

This class is a List class.

Remember that after you write a list you have 

always angle brackets to deal with what type 

the list is going to have.

We can write list with integer or string or 

anything else that we may want the list 

contain.

This is the perfect example of a generic class.



If we inspect a List type you can see that it's a 
list of T.
And here's a bunch of methods that are going 
to work on that list.
And let's go back to our entry point.



So let's create a new class and call it MyList.
We're going to create our own generic list 
class.
So let's start thinking what those list have.
It has an array of items of type T.



It has a property count that contains the 
number of elements in the list.
So we're going to make it private because no 
one needs to get access to that array.
We also have capacity for our list.
And we also need the constructor.
So what we're going to have in these 
constructor.
We need to initialize our array, property Count 
and Capacity with the initial values.



Our Count property is simply number of 
elements in our items array.
And Capacity is the size in memory of our 
items array.



Now we can write Add method to add elements of the type T.
And this method needs to take generic argument T.
Basically it takes the same type as the type of the item array.
Property Count shows the first empty place in items array (after 
last element). 

When we place the new element – we should increment the Count property. 
But its not all.
We must resize the array because we will have IndexOutOfRange exception.



Of course before we add anything to the array we must 
perform a check if the array has a space because we're 
initializing the array with 2 places for items only. We can 
do it in the following way:
So if the items are equal to the capacity we are going to 
multiply it by 2.
We are going to create a new array which is going to 
clone our current array.
Then we're going to double the capacity.
So this top capacity multiply by two and we are going to 
create new greater array and copy previous array to the 
new biger array.
Now we add some elements.
And we check what is the capacity and what is that 
count.
As you see it is working.
We have a capacity of four and count of four. And it is
correct.



One problem that we have here is that we 
can't access the items of the array.
If we want to take first element of the list – we 
get an error: it says cannot apply indexing with 
square brackets to the expression.
MyList of integer basically means that we need 
some way to allow us to index its items and
to do this we need to implement an indexer, which 
we're going to do in the next part.



Generic classes - indexers



We can do the index as a property and it looks 
like this.
It starts just like a normal property.
The property is public.
Then we write type T and keyword this.
Then we need to give it square brackets.
And here we need to give it the indexer.
And we write that by indexing the object, we 
index items array of the object.
As you can see there is no error now – we can 
read the item from our list.



We are going to implement a setter which 
enables us to write elements to the list.
Just the simple property with the only 
difference it's basically giving an indexer to our 
list.
And now we can set elements of the list.
And there are no erros executing this method.
Ok. We have created our own list generic class.
We have an index so we can access our items 
we can add items. Currently we can't remove 
items. But I think you can practice it Youself.



Overloading mathematical operators

Now we are going to overload mathematical 
operator.



We want to add two lists of the same type.
We have two integer type lists and use 
operator + to add them.
But now compiler doesnt know what it should 
be done for this operator. You can do this with 
any of your custom classes you can.



We can compare our objects, but we can 

also do mathematical operations as adding, 

multiplaying, dividing and substracting for 

it. So let's do this with the list class.

And let's teach C-Sharp how to add two 

lists. We have firstIntegerList and 

secondIntegerList the are three elements 

long and third List is a sum two previous 

lists.

We currently can't do this because C-Sharp 

doesn't know how to add these two 

objects.

We are going to overload the mathematical 

operator addition. We have to do it public, 

static and return a type of this operation.

We simply return the sum of all integers in 

the list.



So we can only add lists that are of the same length.

So if list one count is different from the list two count,

we're going to throw an exception 

InvalidOperationException -

lists are of different sizes.

Else if that isn't the case we are going to add them 

and we're going to do this by simply using a for loop.

We create result list with the addition of each of the 

items from the two lists.

We still have an error because compiler doesnt know 

if two arguments of addition are the same type.

And solution of this problem is keyword dynamic.



As you can see now it is no error because 
compiler doesn’t check the type of operands.
It will be checked during executing.
We can now print some elements of the 
sumList



But if we want to use our string.Join method to 
print all elements of the list, we have strange 
values.
Why. Because string.Join operates on lists –
descendants of TList class.
If we want to correct this we should 
implement a method ToList.
Lets do it.



We simply write a generic method ToList – we crete new List 
object and then add all elements from our List and then return 
the result.
Now we can use the string.Join method to retrieve all 
elements from our list.
You can see we have a result list, where all elements are sum 
of elements from previous lists.
5+5=10; six and two is eigth and 3 plus 4 is 7;



st
ri

n
g

But sofar we tried to add only int elements. 
Now we’ll do it with string elements – we do 
all the same operations – method 
concatenates the strings.
As you can see the generic method work 
correct for both number and string lists.


