
Delegates – methods as variables



For most people to learn how to code this and 

why we need it is very frustrating and 

confusing. Instead of trying to explain it I will 

try to illustrate it with an example. Let's start 

with the following. We have a string name 

array and we have a task to extract all names 

with length less then five characters. That's 

easy.



All we have to do is create a loop with an IF condition in it and 

extract them in a new collection. So let's do it. Let's write: list of 

string we're going to use, a list of string to store these new names 

less than 5 chars equals to new list of strings. And we're going to 

create a for loop for each.

And we are going to check if that length is less than 5. And if it is 

we are going to add them to the lessThenFiveChars list. Simple 

enough.

Let's try it. So we get: John, Kyle and Tod.



And here we have a LessThenFive method. So 

that takes a string array at the input and we 

are going to return a new list of strings.

So, new list. This is a result and we are going to 

return them. And we're going to do this less 

than five. It works the same way.

Now what if we want to do the same thing but 

with all names that are more than five 

characters.



Ok that's it. We can create another method to 

do it.

But what if we want only those that are exactly 

five characters. That’s it.

What if all of those are 10 characters long or 

longer.

We can see how quickly we start to get many 

different cases and we can't create infinite 

number of methods to solve them all.

This is where a delegate comes in.

You can take a piece of code and make it 

varying. So let’s show what we mean by this.

Let's take a look at our method that we 

created.

We have only one part of the code that is 

varying. And this is the condition that filters 

the names.

If we want to get the names that are more 

than five characters we simply have to change 

the sign. 

This is the place where we are going to change 

this piece of code. In order to extract this piece 

of code we need to think a little. What does it 

need as an input and what output is it going to 

return. (Something like when you create a 

method).

Well, we need a string in the input, and we are 

going to return a boolean: true or false

which will indicate whether the item has 

exceeds five characters or not.

So we will simply extract our conditions into 

new methods that only contain the conditions 

and nothing else.



We are going to return a 

boolean – if it is less than 

five. We can do the same 

with the rest of the 

conditions. We write: 

MoreThanFive and 

ExactlyFive. So we have 

our three different 

methods with three 

different conditions.

But how are we going to use them 

as variables within that method.

The answer is: delegates. A delegate allow us to store these methods into 

variables and pass them by argument.

So let's create the and let's go with it. This is everything that we need to do in 

terms of the delegate. So the delegate is basically creating a new type.

The last thing that we need to do is fix our call of the method.

We now require a second argument which is a delegate which is actually here's 

the tricky part here. If we change it to the other method we get the names that 

have more than five characters and exactly five. It's still working.



Delegates and lambda expressions



There is a way to perform the exact same 

operations but with much less code.
You may think: well how are you going to make 
it even less. We don’t need filter method at all.



We can use lambda expressions and specify our methods 

right in the place of the argument here so we can simply say 

item length less than 5. It's still working.

We can do the exact same with the other sign that equals. Lambdas simply allow 

us to write inline methods when we can simply write them in one line of code.

You don't have to create new methods for something simple as that. Instead of making 10 

different methods for the different conditions that you want. You can simply write it in line 

wherever you need it. And if I were on this code you will see that it's working just as expected.

Jon, Kyle, Tod; Sharon, George and the rest of the names which are 5 characters long.



Delegates chaining with many methods

Let's create one very simple method that is simply 

going to print something on the console.



It’s the most basic example of using delegates. 

First: we create delegate which is a header of 

method: with name and arguments.

Then we create a variable of type of the delegate

and assign a compatible method to it. And finally

we call the method using our variable. Now you 

may be wondering well what's the point of this.

Why can't we just write print message.

Why should we use delegates?



There is something different that this allows us to do.

The thing is that we can have more than one method 

to a given delegate variable.

Basically we are adding more methods to the 

delegates.

We are creating a list of methods that will be 

executed when the delegate is called.

Now we're going to get message a couple of times.

So this method is going to execute several times.



Of course we can call different methods as well.

So if we create a second method to print twice the 

message we're going to do the exact same thing.



We can also remove methods from the delegate 

chain so we can say P minus equals PrintTwice.

And if we call p again then you'll get PrintTwice

only once.

Now when we subtract methods from the delegate 

chain we are removing the last occurrence of the 

delegate.



All right how are we able to check what is on the 

list of the delegate chain.

What's the least of those methods.

There are two easy ways in which you can do this.

The first is to use a For Each loop.

So for each delegate has a GetInvocation() method 

which returns the list of all assigned members to 

the delegate chain.

And here by getting these items we should get the 

names of all methods that are assigned.

So we have print, print, print twice, print and again 

print.



If you put a breakpoint here and we look at the 

debugger, we can see here delegates – it has five 

items in it.

Print, Print, PrintTwice, Print, Print.

If you think about it for a while.

The delegate mechanism may not seem necessary

at the moment, but it will prove necessary when

programming events.

But we’ll talk about it when we go to events.



Delegates chains with returning
methods – catching all returns



We have new example which examines length of a 

string – More, less or exactly five.

There is a delegate of the same signature (one 

string argument and return bool value).

And we're going to create a new chain of delegates 

with these methods.

So we put three methods which checks three 

conditions.

So if we now use this delegate with a given 

message, there are three return values from three 

methods. And we can catch only one of them (the 

last one).



So how do we get all three values. The way to do this is to 

individually execute each of the items in this delegate and create 

a list of results.

We are going to use the invocation list and DynamicInvoke. So in 

this example we return Booleans to the returns list. The 

DynamicInvoke returns object value. It which basically means that 

we have to manually type cast it into a boolean.

So let's also print the results from this operation and the results: 

we get all three returns from these methods. We get false true 

and false. We can do this in another way, an easier way.



We can do it in an easier way by using Lambda and 

select method.

We call select for invocation list, and results of 

DynamicInvoke calls convert to the list of bools. As 

you can see result is the same but code is placing in 

just one line of code.

You can even create a generic method that would 

work for any delegate that you have and you will 

be able to catch all of the return types.

And this is what we will do next.



Generic methods to catch all returns

We can catch all of the results that are returned by 

a delegate chain.
But why do we have to rewrite the code every 
time; we can extract it in a generic method.



So let's create a new method for public static.

We're going to return a list of T because we're going to return a 

different type every time and let's call them and catch.

So we are taking a delegate as an input argument and we're also 

taking an object parameter and we're going to make it equal to 

null because we're going to make it optional because not

all methods are going to take some input into or something.

So this is optional.

And here we have to create a new list to which we 

will assign results. And method select with lambda 

argument to get only results from Method chain.

Now we have one slight issue here - we need to 

typecast into t. and we have to return

it. We have the result.



Now just to confirm that it's working for different types let's create a new 

delegate. It get lengths. So we are turning results to integers.

We're going to use lambda expressions this time because it's easier and 

faster.

We assign three methods to the chain: length, length+1, length+2.

So we have two methods that are going to take the length of the input argument 

which is the message. In first delegate chain we return boolean values and in 

second integers.

So in each cases we catch all the results and we can show results 

on the console. So we managed to generalize this method as well.



Func and Action delegates

All right I'm going to show you one new type.

It's not exactly the type of delegate but is to delegate.



Inputs – up to 16 params Output – the last
parameter

Built in delegate method

We are going to use a built in delegate which is called func like so as you can see here 

we have angle brackets so we need to get some parameters some generic parameters.

In our case we need a delegate that matches the signature of boolean return type and 

string input type. And here you can see that we have 17 overlord's.

If we take a closer look you'll see that we have inputs and the last parameter is always 

the output. So no matter how many parameters we get the last type is a type that is 

going to be returned. We can give it up to 16 input types. Let's do that less than five.

Less than five equals. Here we have to assign a method that matches the signature to 

this Func delegate. And we use lambda to do it. x => x.Length < 5. And so we do with 

“moreThanFive” and “exactlyFive”.

The only purpose of this delegate here is to make our 

life a bit simpler and easier and we no longer need to 

use delegate explicitly like we are doing it here.

So I'm going to delete it and you're not going to 

refactor our code and make it work without this 

explicit delegate.



Value – body of methodType - delegate Variable – method name

So X is the input X of length less than 5 and instead of using this method we're 

going to use this delegate that we created here. It's still working. We can do the 

same thing for more than five. Exactly five but we have seen this enough times 

already.

Even without us creating a new delegate is still going to work simply because 

these methods here match the signature of this func delegate. Let's use the 

different approaches. Instead of giving it the methods we already saw that they 

are working we are going to use the expression.



Inputs – up to 16 params
No output
parameterBuilt in delegate method

I want to address one other thing here we have another built in 

delegate which is called action and the difference between 

action and func is that the action only takes input.

It has no return types or in other words the action is a built in 

delegate that you are using for methods that are of return type 

void, methods that are not returning anything.

So if your method returns something you use func. If it's a void 

like the print method that we had earlier you have to use action.

So let's see an example with the printing methods with the 

action. You have the option to take in 16 input types. We need 

one.

So printer equals print methods.
We can also sign the print twice. And let's use them.



We have: message, message message and message.

So there it is funk and actions simply make your life a bit easier.



Anonymous methods and lambda 
expressions

So you might have heard the term anonymous methods. This is what we're 

talking about.

And this can be used with func and action delegates. So let's see how this 
works out.



output

input

A simple example is to create a delegate that takes one integer 

input and use a boolean return type. One integer input and 

check if this integer input is less than 8.

And we can check integer 5. Of course, it is less than 8.

All right. Easy enough.

Something that you may have wondered is why we don't have 

types when we use variables.

This is a very good question.

But we can have them we can have them but we don't need 

them. Why.

C-Sharp knows what is a type that we are addressing.

We already defined the types in the func types.

So here we say that we are taking one integer input and we 

are returning a boolean.

So it's obvious what types we are going to need. This is our 

input. This is our output.

It's obvious that it's going to be integer. And this code here will 

give us our return value.

We're performing a comparison and the comparison returns a 

boolean.
So this is why we are not using any types when we write our 
code with lambdas.



output

input If we have more than one input, we have to 

use brackets.

Use of the type is optional like before.

It's obvious what is what. So let's try it out.

Let's take two integers as an input and 
return a boolean output.



Same rules apply for the action delegate.

Just remember we have no return types so if you want to keep a method 

that is void and has no input arguments we will simply use action with no 

arguments and empty brackets for the input, and we have no angle 

brackets because don’t have to define any input types.

We're simply going to perform this operation after lambda operator.
Now we can expand the expression.



So far we used one line methods but we can use a bit more complex method as well.

Let's create new action method that takes two integers as inputs and it's going to make three prints: 

first argument, second argument and a sum. Use of the type is optional.

Here you can write as much code as you want.

It's the body of the anonymous method that are going to create.

So let's try it out.

All right. So this is how you can write inline anonymous methods.
Of course if you need more than a few lines of code you were better off creating a whole new method.



More complex anonymous methods

All right so we are going to work on a bit more complex 

anonymous method. Example we're going to do is to perform 

the filtering with an anonymous method.



So we're going to create func delegate.

We are taking a string array as a first input and a delegate 

(which will be our filter) as a second. Third parameter (string 

array) is an output. The second parameter that is delegate will 

check a particular string and return a Boolean value.

So, we have a type input which is another func of string and 
bool



So the delegate gets input and we will return a list of strings.

And here we start to create our anonymous method.

We will also have a list of strings that will be our result.

All you have to do is just do the filtering.

So all we need is a For Each loop for the array.

A filter with a specific condition will be applied to each element of the array. If the 

condition is met, the element will be moved to the output array.



Alright, let's take advantage of this. We will create a list of strings that will be our output. We also need a filter, which

we will give as the second input parameter. Select strings whose lengths are less than 5. We save the filter as the 

second parameter using the lambda expression. X is the filter input, which is a string. The filter returns a logical value, 

which is our output. Fine. As you can see it works. Because our filter expression is a delegate, we can pass different

pieces of code through it. In the second example, we check whether the letter 'o' is at the specified position of the 

string. In the following examples, we call methods that compare and convert strings. We can also build more advanced

filters. However, if we have to do something really complicated, it is better to create a separate method.


