Events — Publisher and Subscribers

If you want a given action to be activated, if
something happens in another object, then
this is the place for "events".

They allow us to write both codes
separately and avoid joins in the code
between objects and yet the objects will
work together.

What is event?

The event fires and executes different code. If you look at this example, this weapon
shoots bullets and the soldiers are hiding. They react to the event.

The object that stores the event or the one that triggers it is called publisher in this
example, while the methods added to this event are called subscribers.

Imagine, then, that all soldiers who are fired at with this weapon are different methods
separate methods and all of them are subscribers to this event.

Publisher Action. Subscribers

Object which — Methods that executes

holds the event when event is fired

Chck me

Object 1

A 4

The button was pressed I« Object 2

When you start working with Windows
Forms, the simplest example would be
clicking a button and something must
happen. Click

activates the event, which in turn activated
the subscribed method.

The anatomy of an Event

Anatomy of an Event

Publisher:

* Delegate — matching the event
signature

* Event - of the type of delegate

* Raise the event in some point

Subscribers:

A method(s) with matching signature

° You must have the same type of event as the
¢ S u bsc rl bEd to t h e eve nt delegate. And of course you have to hook them
up. At some point you must trigger an event.
These first three steps relate to part of the event
for the publisher.

We need a class that will do some work and after
its completion an event must be fired.

i‘J Events - Microsoft Visual Studio
Plik Edycga Widok Projekt Kompilowanie Debugowanie Zespdt Marzedzia Test Analiza Okno Pomoc

Q- Mool 9 - Debug -~ Any CPU ~ P Rozpocznij - M _ Y = %= RN -

= ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs += X
=
o [c#] Events = & Events.Shooter.KillHandler -
g using System;
i
% Enamespace Events

{
= BT T R o
3 = public class EntryPolnt
g {
]
2 = static void Main(string[] args)

{

i H

R

= public class Shooter

{
public delegate void KillHandler{object sender, EventArgs e);
B
¥

) Let's write the code. We will have a player, i.e.

a shooter, who will generate events (shots).

Eﬂ Events - Microsoft Visual Studio

Plik Edycga Widok Projekt Kompilowanie Debugowanie fespdt Marzedzia Test Analiza Okno Pomoc

Q- Mool 9 - Debug -~ Any CPU ~ P Rozpocznij - M _ Y = %= RN -
-;% ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs* = X
o [c#] Events = & Events.Shooter.KillHandler -
E:r Using System;
p
o Enamespace Events
. {
G = public class EntryPoint
g {
9‘
2 = static void Main(string[] args)
{
i H
B
= public class Shooter
{
public delegate void KillHandler{object sender, EventArgs e);
public event KillHandler KillComplete; Now we must create this event.
} All events have the same signature - they have
B two arguments: the object that triggered it and

the event arguments.
So let's create a delegate matching this

signature - a public delegate, our return type
will be void.

This is our delegate.

Now we need to create a delegate event and
let's call it KillComplete.

Eﬂ Events - Microsoft Visual Studio

Plik Edycga Widok Projekt Kompilowanie Debugowanie Zespdt Marzedzia Test Analiza Okno Pomoc

e - Mool 9 - Debug -~ Any CPU - P Rozpocznij -~ M _ [_| -

= ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs*
=
o [c#] Events = & Events.Shooter.KillHandler -
g = stati oid Main(string[] args)
i i
=
o

i h
=
3 R
=
]
3, = public(class Shooter
=

{
private Random rng = new Random();
I public delegate wvoid KillHandlei{ocbject| sender, EventArgs e);

c event KillHandler KillComplete;

= public veid Shootingloop() Let's make an infinite shooting loop.
- hile (+rue Every time we trigger events, we need to
= [ile (true) check if the event is empty.
- You can only trigger an event if there are
=| if(rng.Next(2) == @) subscﬂbersy &8
[.

As the first argument we give this (i.e.
Shooter)

1]
LN}

if (KillComplete != null)

L .
KillComplete.Invoke:(this, EventArgs.Empty); The second parameter is the data
! provided by the event. We will not provide
i 1 any data for now.

E‘J Events - Microsoft Visual Studio
Plik Edycga Widok Projekt Kompilowanie Debugowanie Zespdt Marzedzia Test Analiza Okno Pomoc

Q- Hr-al 9 Debug ~ Any CPU ~ P Rozpocznij - M _ Y = %= RN -
-f.% ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs += X
o [c#] Events = & Events.Shooter.KillHandler -
i = public class Shooter
: {
. private Random rng = new Random();
jf public delegate void KillHandler{object sender, EventArgs e);
§ public event KillHandler KillComplete, ShootMissed;
% = public void Shootingloop()
{
= shile (true)
{
= if (rng.Next(2) == @)
{
= if (Killcomplete != null)
{
KillComplete.Invoke(this, Eventlérgs.Empty);
i }
I h , ”
= alse A sniper has a 50 percent chance of killing
{ someone.
=l if (ShootMissed != null) So we will say that if the random number is 0
{ then the KillComplete event is dispatched and
ShootMissed.Invoke(this, EventArgs.Empty) EIRRESUAYINTLH
}

}
Thread.Sleep(1888);

E‘J Events - Microsoft Visual Studio
Plik Edycga Widok Projekt Kompilowanie Debugowanie fespdt Marzedzia Test Analiza Okno Pomoc

e - Mool 9 - Debug -~ Any CPU ~ P Rozpocznij - M _ Y = %= RN -
-f.% ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs* = X
o [c#] Events = & Events.Shooter.KillHandler -
g
i = public class Shooter
=
& {
. private Random rng = new Random()};
jf public delegate void KillHandler(object sender, EventArgs e);
g public event KillHandler KillComplete, ShootMissed;
2 = public void Shootingloop()
{
= shile (true)
{
= if (rng.Next(2) == @)
{
KillComplite?.J¥nvoke(this, EventArgs.Empty);
I b
= else
{
ShootMisied?.Thwoke(this, Eventérgs.Empty);
i ¥ A little simplification of the code. Instead of
Thread.Sleep(1000); checking if the object is null and then calling its
5 } method, we can use the "object? Method"
L } construct, which will cause the method to be
- ¥ called only if the object exists (it is not null).
I

Plik Edycga Widok Projekt Kompilowanie Debugowanie fespdt Marzedzia Test Analiza Okno Pomoc

e - Mool 9 - Debug -~ Any CPU ~ P Rozpocznij - M _ Y = %= RN -
-f.% ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs += X
o [c#] Events - ‘IsEvents.Entr_-,rPn:nint = @ KilledEnemy(object sender, EventArgs &)
g Busing System;
il using System.Threading; r
% - Ch\Windowssystem
“ Onamespace Events I killed the enemy!
o I killed the enemy?
G| 1 I killed the enemy?
8 = public class EntryPoint I killed the enemy!?
= I killed the enemy?
= { I killed the enemy?
= static void Main(string[] args)
i
Shooter shooter = new Shooter();
shooter.KillComplete += KilledEnemy;
shooter.Shootingloop();
i 3
= public static void KilledEnem'{object sender, EventArgs e)
{
Console.Writeline("I killed the enemy!"};
&I | }
i 3
Before we call this method, we need a
method that will subscribe to our event.
) _ This is our Subscriber, a method
= public class Shooter belonging to another object that will be
1 . triggered when we fire the event. And
private Random rng = new Randomps 1 now we have to subscribe to this
e v:_:éz;? oic KlllH?wL_a' P L -ERO I || thod for our event. You should know
R 'SE‘lilﬂ"nflcr KillCompiete, Snoothisses: this syntax. It's just a chain of delegates.
= 1‘("'“' D SErpEapLaI | And when this event is launched, several
I different things in different places can
= inile (r —_:|' b . d
{ e activated.

= if(rng.Next(2) == 8)

<)

Qkno Pomoc

I 0
11
b

ChWindows\system32omd.exe

the enemy?
the enemy?
the enemy?
the enemy?
the enemy?

SCOFE !
SCOPE .
SCOFE !
SCOPE .
SCOFE !

Therefore, let's add the AddScore method,

which will count shots hit. No result counting
yet. Why?

Plik Edycga Widok Projekt Kompilowanie Debugowanie Zespdt Marzedzia Test Analiza
e - Mool 9 - Debug -~ Any CPU - P Rozpocznij - M _ g
-E'? ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs += X
o [c#] Events = & Events.Shooter.KillHandler
g
il Elnamespace Events
s
o {
B = public class EntryPoint I killed
o I killed
] 1 I killed
8 static int score = 8: % ki%%ﬂg
2 = static void Main(string[] args) 1he
{
Shooter shooter = new Shooter();
shooter.KillComplete += KilledEnemy;
shooter.Shootingloop();
= } L ®
= public static veoid AddScore(ocbject sender, EventArgs e)
i
SCOre+t;
i H
= public static void KilledEnemy(object sender, EventArgs e)
{
Console.Writeline($"I killed the enemy! - score: {scorel");
i h
R
& public class Shooted::]
B

<)

Plik Edyga Widok Projekt Kompilowanie Debugowanie fespdt Marzedzia Test Analiza Okno Pomoc
e - Mool 9 - Debug ~ Any CPU ~ P Rozpocznij - M _ Y = %= RN
E ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs += X
=
o [c#] Events =~ #% Events.Shooter - @ g
g Husing System;
g | using system.Threading; BB C\Windows\system32\cmd.exe
m
&l S I killed the enemy? — score: 1
- Elnamespace Events I killed the enemy? — score: 2
g { I killed the enemy? — score: 3
‘E_ oublic class i I killed the enemy? — score: 4
2 = public class EntryPoint I killed the enemy? — score: &
= |
2 {
static int{ score = 8;
= static void HMadinfstring[] args)
{
Shooter shooter = new Shooter(); .
shooter.KillComplete += AddScore;
shooter.KillComplete += KilledEnemy;
shooter.Shootingloop();
i H
= public static void AddScore(cbject sender, EventArgs e}
{
SCOre+t;
i H
= public static void KilledEnemy({object sender, EventArgs e)
{
Console.Writeline($"I killed the enemy! - score: {scorel");
i H
i 3
Of course, AddScore should also be
subscribed. The result is now calculated
correctly.
B public class Shooted::]

<)

Plik Edyga Widok Projekt Kompilowanie Debugowanie fespdt Marzedzia Test Analiza Okno Pomoc

e - Mool 9 - Debug ~ Any CPU ~ P Rozpocznij - M _ Y = %= RN -
= ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs += X
=
o [c#] Events =~ #% Events.Shooter - @ g
g = public class EntryPoint
i 1
L m ChWindows\system32omd.exe
% static int score = 8; e i 5 AL
& D e arad R I killed the enemy? — score: 13
= \ st
= = = Ezils Il LT S e e [AT I killed the enemy?! — score: 14
Q_‘ i I k:i.].lﬂd the enemy: — score: 15
- Shooter shooter = new Shooter(); % ﬁi;;gg,the enemy? — score: 16
2 shooter.KillComplete += AddScore; I killed the enemy? — score: 17
e izt - - o=, . I killed th e 18
shootar P T e --.a...l_fc""ﬂm"l", I misszd!‘ e Eneny score
shooter.5hootMissed += MissedEnemy; I missed?
- S —) I killed the enemy? — score: 19
shooTer.shve Ll oy
1 ——
= public static void AddScore(object sender, EventArgs e)
{
SCOre+t;
i H
= public static void KilledEnemy(object sender, EventArgs e)
d
Console.Writeline($"I killed the enemy! - score: {score}");
i H
= public static void MissedEnemy(object sender, EventArgs e) The last step is to subscribe to the
1 ShootMissed event. For this
Console.WriteLine("I missed!™); purpose, the MissedEnemy
3 method was created and
i connected to the event.
R
= public class Shooted::]

Passing additional information with

events

Providing additional information by events.

In some cases, you may need to send
information about the object that caused the
event as well some other additional
information about the caller. This of course will
introduce some pairing of objects. Sometimes
you just can't do without it.

Plik Edycga Widok Projekt Kompilowanie Debugowanie fespdt Marzedzia Test Analiza Okno Pomoc
G - Mool 9 - Debug -~ Any CPU ~ P Rozpocznij - M _ Y = %= RN
-f.% ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs += X
o [c#] Events =~ #% Events.Shooter - @ g
g {
E static int score = 8;
o = static void Main(string[] args)
i {
A Shooter shooter = new Shooter()({ Name = "Bill™ }; I killed
= shooter.KillComplete += AddScore; % t;%igg
2 shooter.KillComplete += KilledEnemy; I killed
shooter.ShootinglLoop(); % ki%%gg
3 I killed
= public static void AddScore(cbject sender, EventArgs e)
{
SCOre+t; -
i H
= public stati oid KilledEnemy(object sender, EventhArgs e)
{
string name & _(sender as Shooter)2Nagle;
Console.WriteLine($"I killed {scoref enemy! - my name is {name}");
i H
B
= public class| Shooter
{
private Random rng = new Random();
public delegate id KillHandler(object sender, EventArgs e);
______ event KillHandler KillComplete, ShootMissed;
______ string Name { get; set; }
=H: ' public oid ShootinglLoop()
{
= thile (true})
{

enemy? — my name iz Bill
enemy? — my name is Bill
enemy? — my name iz Bill
enemy? — my name is Bill
enemy? — my name iz Bill
enemy? — my name is Bill
enemy? — my name iz Bill

Before we go into further
information, let's call our
sniper: Bill - maybe this will
make him more civilized.

We also have a property by
which this name can be
written and read. Reading this
information and using it in the
subscription method is easy.
We have access from the
subscriber to properties that
were created in the object.
However, we remember that
we get a variable of type
object in the subscriber. We
have to project it onto the
Shooter type.

Eﬂ Events - Microsoft Visual Studic
Pllk Elj'_‘,"CJE wldl:lk PrDJAI.L L it e 2l i e L TP T AL L [P Tt L R [L | PR | (SR

Pl This way you can get information about the object itself. What if we need other additional information that is not
Q- ik g — T . . .
available from our publisher? Here comes the second argument. We are currently passing an empty argument. But

E ShotsFiredEventArgs.cs this is not always the case. And we can properly convey everything through this event, which is in itself and does
=) Events nothing. So if we open the event we will see that there is nothing here but a designer. If you want to use this event,
5* J3 We pass the information we need to the class that you inherit from the EventArgs class.
m
% = Shooter
- {
G| Random rng = Random();
4 KillHandler(sender, KillCompleteEventArgs e);
% KillHandler KillComplete;
Name { : ;1
=i Shootingloop()
1
= ()
{
=| (rng.Next(2) == B)
{
KillComplete?.Invoke(s KillCompleteEventArgs(DateTime.Now));
i b
Thread.Sleep(1888);
i }
i ¥
i ’ So create a new class and name it
= KillCompleteEventArgs| : EventArgs KillCompleteEventArgs. Let's say we want to know
[when the murder will occur. So we will create a
DateTime TimeOfKill { : ! new property that will store the date and time. W
= KillComple#eEventArgs(DateTime time) also need to create a constructor for this class.
1 That's all the information we need from this new
Time0fKill = time; event. We still need to change the event argument
} in our delegate to the new event we just created.
I } Of course, now we need to modify the event call

} and pass the current time as a parameter.

<)

Plik Edyga Widok Projekt Kompilowanie Debugowanie fespdt Marzedzia Test Analiza Okno Pomoc
e - Mool 9 - Debug ~ Any CPU ~ P Rozpocznij - M _ Y = %= RN
E ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs += X
=
o L3 - i =
& SN . _ “8 BuentsShoo BT T 11ed 168 enemy? - my name is Bill - time: 2019-84-81 08:38:5:
=] LJs:ﬂg system.Threading; I killed 11 enemy? — my name is Bill - time: 26817-84-81 A@:38:5:
i I killed 12 enemy?! — my name is Bill — time: Z2017-84-81 AA@:35:5"
E, I killed 13 enemy?! — my name iz Bill — time: Z817-84-81 A@:38:5"
o Elnamespace Events I killed 14 enemy?! — my name is Bill — time: Z2017-6@4-81 AA@:37:0]
o I killed 15 enemy?! — my name iz Bill — time: ZA017-84-81 8@:37:68¢
- { I killed 16 enemy?! — my name is Bill — time: Z2017-84-81 AA@:37:8¢
3 = public class EntryPoint I killed 17 enemy?! — my name is Bill — time: 2817-84-81 A0:37:8"
= I killed 18 enemy?! — my name is Bill — time: Z2017-84-81 AA@:37:11
=] { I killed 19 enemy?! — my name iz Bill — time: Z017-84-81 A@:37:1:
E_. static int score = 8; I killed 28 enemy?! — my name is Bill — time: Z2017-@4-81 AA@:37:1"
= static void Main{string[] args) |
{
Shooter shooter = new Shooter() { Name = "Bill™ };
shooter.KillComplete += AddScore; of bscrib | h
shooter.KillComplete += KilledEnemy; co.urse., c;ursu .SC” herass charf1ges. ded
shooter.ShootingLoop(): Recmvesn19nnanont roug t.e orwarde
} event and displays the appropriate
B information. When done, additional
= R R e Y. Lt G e S e el (nformation appears in the console window.
{
SCOre+t;
i H
= public static veid KilledEnemy{cbject sender, KillCompleteEventArgs e]
i
string name = (sender as Shooter).Mame;
Console.Writeline($"I killed {score} enemy! - my name is {name} - (time: {e.TimeDFKill}");
i H
i }
= public class Shooter
{
private Random rng = new Random();
public delegate void KillHandler{object sender,| KillCompleteEventArgs e];
public event KillHandler KillComplete;

No Delegates - EventHandler

The last thing | want to show you about events
is that we have a shorter path in which we can
achieve exactly the same.

Plik Edycga Widok Projekt Kompilowanie Debugowanie fespdt Marzedzia Test Analiza Okno Pomoc
e - Mool 9 - Debug -~ Any CPU ~ P Rozpocznij - M _ Y = %= RN -
-f.% ShotsFiredEventfrgs.cs Shooter.cs EntryPoint.cs += X
o [c#] Events = % Events Shooter - ¥ KillComplete
= L
E string name = (sender as Shooter).Name;
§ Console._WritelLine(3$"I killed {score} enemy! - my name is {name} - time: {e.TimeOFfKill}");
m
2 I h
- i ki
-z
=
g = public class Shooter
- {
private Random rng = new Random();
=
i (CAWindows\system32\cmd.ex
- — avent Event , SETETTA 1 - I killed 1 enemy?! — my name iz Bil
_______ =yent EventHandler<KillCompleteEventArgs> KillComplete; I killed 2 enemy? — my name is Bil
I killed 3 enemy?! — my name iz Bil
- - ciring oot cot e I killed 4 enemy! — my name is Bil
oL T e Nam? { get; set; } I killed 5 enemy? — my name is Bil
= public void ShootingLoop() I killed 6 enemy?! — my name iz Bil
I I killed 7 enemy?! — my name iz Bil
. I killed 8 enemy! — my name is Bil
= thile (true)
{
= it (rng.Next(2) == 8)
{ e,
KillComplete?.Invoke(this, new KillCompleteEventArgs(DateTime.Now));
¥
I Thread.Sleep(1€08); We will use EventHandler for this purpose. But
} how to do it since our event handling methods
i ¥ can have different signatures. The event
i 1 handler may differ by a second argument,
which is additional parameters. The handle is
=) public class KillCompleteEventArgs : EventArgs constructed as a generic method. In angle
1 _ brackets we place the name of the type of
e event that is transmitted. The code is
= public KillCompleteEventArgs(DateTime time) simplified and the result is the same.

