
Events – Publisher and Subscribers

If you want a given action to be activated, if

something happens in another object, then
this is the place for "events".

They allow us to write both codes

separately and avoid joins in the code

between objects and yet the objects will
work together.



Publisher
Object which

holds the event

Subscribers
Methods that executes

when event is fired

What is event?

Action

The event fires and executes different code. If you look at this example, this weapon
shoots bullets and the soldiers are hiding. They react to the event.

The object that stores the event or the one that triggers it is called publisher in this
example, while the methods added to this event are called subscribers.

Imagine, then, that all soldiers who are fired at with this weapon are different methods

separate methods and all of them are subscribers to this event.



Object 1

Object 2

When you start working with Windows 

Forms, the simplest example would be 

clicking a button and something must
happen. Click

activates the event, which in turn activated
the subscribed method.



The anatomy of an Event



Anatomy of an Event 
Publisher:
• Delegate – matching the event 

signature
• Event – of the type of delegate
• Raise the event in some point
Subscribers:
• A method(s) with matching signature
• Subscribed to the event

You must have the same type of event as the 

delegate. And of course you have to hook them

up. At some point you must trigger an event.

These first three steps relate to part of the event 

for the publisher.

We need a class that will do some work and after

its completion an event must be fired.



Let's write the code. We will have a player, i.e. 

a shooter, who will generate events (shots).



Now we must create this event.

All events have the same signature - they have

two arguments: the object that triggered it and 

the event arguments.

So let's create a delegate matching this

signature - a public delegate, our return type

will be void.

This is our delegate.

Now we need to create a delegate event and 

let's call it KillComplete.



must be
subscribers

Let's make an infinite shooting loop.
Every time we trigger events, we need to 
check if the event is empty.
You can only trigger an event if there are
subscribers.
As the first argument we give this (i.e. 
Shooter)
The second parameter is the data 
provided by the event. We will not provide
any data for now. 



P
u

b
lis

h
er

A sniper has a 50 percent chance of killing
someone.
So we will say that if the random number is 0 
then the KillComplete event is dispatched and 
if 1 is ShootMissed.



A little simplification of the code. Instead of 
checking if the object is null and then calling its
method, we can use the "object? Method" 
construct, which will cause the method to be 
called only if the object exists (it is not null).



Subscriber

Before we call this method, we need a 
method that will subscribe to our event. 
This is our Subscriber, a method
belonging to another object that will be 
triggered when we fire the event. And 
now we have to subscribe to this
method for our event. You should know
this syntax. It's just a chain of delegates. 
And when this event is launched, several
different things in different places can
be activated.



?

Next
Subscriber

Therefore, let's add the AddScore method, 
which will count shots hit. No result counting
yet. Why?



Of course, AddScore should also be 
subscribed. The result is now calculated
correctly.



Second event

The last step is to subscribe to the 
ShootMissed event. For this
purpose, the MissedEnemy
method was created and 
connected to the event.



Passing additional information with 
events

Providing additional information by events.
In some cases, you may need to send
information about the object that caused the 
event as well some other additional
information about the caller. This of course will
introduce some pairing of objects. Sometimes
you just can't do without it.



Before we go into further
information, let's call our
sniper: Bill - maybe this will
make him more civilized.
We also have a property by 
which this name can be 
written and read. Reading this
information and using it in the 
subscription method is easy. 
We have access from the 
subscriber to properties that
were created in the object. 
However, we remember that
we get a variable of type
object in the subscriber. We 
have to project it onto the 
Shooter type.



This way you can get information about the object itself. What if we need other additional information that is not 
available from our publisher? Here comes the second argument. We are currently passing an empty argument. But 
this is not always the case. And we can properly convey everything through this event, which is in itself and does
nothing. So if we open the event we will see that there is nothing here but a designer. If you want to use this event, 
we pass the information we need to the class that you inherit from the EventArgs class. 

So create a new class and name it
KillCompleteEventArgs. Let's say we want to know
when the murder will occur. So we will create a 
new property that will store the date and time. We 
also need to create a constructor for this class. 
That's all the information we need from this new
event. We still need to change the event argument 
in our delegate to the new event we just created. 
Of course, now we need to modify the event call
and pass the current time as a parameter.



Of course, our subscriber also changes. 
Receives information through the forwarded
event and displays the appropriate
information. When done, additional
information appears in the console window.



No Delegates - EventHandler

The last thing I want to show you about events
is that we have a shorter path in which we can
achieve exactly the same.



We will use EventHandler for this purpose. But 
how to do it since our event handling methods 
can have different signatures. The event 
handler may differ by a second argument, 
which is additional parameters. The handle is 
constructed as a generic method. In angle 
brackets we place the name of the type of 
event that is transmitted. The code is 
simplified and the result is the same.


