
Asynchronous Programming

And now asynchronous programming. Why do we need this?
There is a very good reason why you should know something 
about it.
Consider the following case of writing a program that deals with 
very large files or communicates
with databases or simply performs a task that takes a long time to 
complete.
When you start working with a file or database, or anything 
similar, you will have delays because these tasks take a long time.
And this will make your application not respond.
In such cases, it is very good to know how to apply simple 
asynchronous programming, at least to display a message on the 
console and not cause that our application does not respond.



?

Let's start with a very simple example.
Let's create a method that combines a very long string.
It takes so much time.
As part of this method, we will create a new linked chain.
We will create a loop to connect these subtitles hundreds 
of thousands of times in this way.
If we use this method now and then want to immediately 
print the message, the effect is that for a very long time 
we will not see the effect of the program.
Currently, our method does not work in the background.
It works and after receiving the method we receive a 
message.



What if we want to display a message in 
progress?
This method still works, so if we want to write 
that it is in progress and then complete it, then 
of course it will not work as it should and we 
will see both messages at the same time.
However, we want us to be notified that the 
task is in progress.



To do this, we must use a class called Task.
All we have to do is create a new instance of this class and 
pass the method as an argument to the constructor.
This constructor accepts methods that have no arguments 
and do not return a result.
Our method fits this signature because it meets these 
requirements.
For our method to start to run, you must still start the Start 
method belonging to the Task class.
Let's run it and see what the result is so far.
And you can see that both inscriptions appear at the same 
time.
To change this, we still need the Wait method. Everything 
that will be performed after this method will be after the 
task is completed in asynchronous mode. Now the 
subtitles appear when we intended to. Before we move on 
to the next lesson, I just want to show you that there are 
two other ways we can initiate a task in asynchronous 
mode.
It was the first way.



second method

The second way is to use the task factory.
So we no longer have to create a new task 
using new and start the constructor and then 
the Start method. We just run a new task in 
the task factory.
We can see that it works exactly like the first 
way. Here too you can use the Wait method.



third method

The third way is to use the action.
So the Run and new Action method with a 
parameter that is the method we want to run.
In the following, we will use the second 
method, i.e. the task factory.



Using Task on methods with arguments

Okay, you've been through asynchronous 
method calls, but that's not a very useful way.
We don't get any results and we can't use any 
arguments.
Let's say we want to change the amount of 
concatenation - we will do it by creating input 
arguments for the method.
So let's do it.



If we create a method with two parameters. The first 
parameter indicates the character we will be adding, and 
the second parameter will determine how many times 
this operation is to be performed. We will then receive 
an error. Basically, this means that our method no longer 
corresponds to the action signature that is required for 
use. To get around this problem, we can use the Lambda 
expression and call this method an anonymous method. 
So we'll create a normal method that will be able to call 
another method. It looks something like this.
We use empty parentheses because we don't need to 
have any input arguments to satisfy the Action delegate.



Since we only have one line of code here, we 
simply created a method that allows us to call 
our second method without restrictions.
We don't have to use curly braces, so we can 
just do it in one line. And it will continue to 
work.



Using Task on methods with return type

We learned how to call a method 
asynchronously and how to use a method that 
has specific call arguments.
The next logical step for us is to recover some 
data from this method.



If it's a method that returns something. Let's say - a string 
of characters that we want to use later in our code.
We need to make our method return a string.
It also requires our task to have a generic type string, 
because a task that does not contain types is a task that is 
used for methods that are void.
If we run the code now, it will still work, but we won't 
have access to the output of the method.
So we have the result, but we can't use it yet.
So when you have a method that returns a result, all you 
have to do is do the task and read the Result property 
from the Task class object. Of course, we can read it only 
after completing the method, i.e. after the Wait method.



The async and await keywords

Up to this point you have all the components 
that will make your methods asynchronous.
You know how to call methods, pass 
arguments and get results.
In this part of the lecture you will learn 
keywords that will simply make your life easier 
in creating asynchronous code.
Let's do it and see where it takes us.



synchronously

asynchronously

Let's use the async keyword here in the declaration of our method, we'll see that an error has occurred - asynchronous methods must be void.
Let's create a new task that will be a platform for asynchronous invocation of our method. Now we need to complete the anonymous 
method. You can see here that we just use the same method. We're just going to transfer this code to our task factory. So remember that we 
need to keep the keyword return because we want to return a string. Because we want to catch our result only after completing the method -
we will use the keyword await. Basically, we've created a sort of bubble.

We can call our method asynchronously and 
synchronously. As you can see during the 
asynchronous form, we can perform other 
tasks. However, when we are going to read the 
Result property, the task is waiting for the 
calculations to complete. As you can see the 
results obtained are the same.


